美篇六六网 >工作计划

三角函数教案6篇

教案的详细编写有助于我们在课堂上更有计划地教学,教案的设计应当考虑到学生的兴趣和实际生活经验,美篇六六网小编今天就为您带来了三角函数教案6篇,相信一定会对你有所帮助。

三角函数教案6篇

三角函数教案篇1

一、基础知识回顾:

1、仰角、俯角 2、坡度、坡角

二、基础知识回顾:

1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,那么相邻两棵树间的斜坡距离为 米

2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆高度为 米(保留根号)

3、如图:b、c是河对岸的两点,a是对岸岸边一点,测得∠acb=450,bc=60米,则点a到bc的距离是 米。

3、如图所示:某地下车库的入口处有斜坡ab,其坡度i=1:1.5,

则ab= 。

三、典型例题:

例2、右图为住宅区内的两幢楼,它们的高ab=cd=30米,两楼间的距离ac=24米,现需了解甲楼对乙楼采光的影响,当太阳光与水平线的夹角为300时,求甲楼的影子在乙楼上有多高?

例2、如图所示:在湖边高出水面50米的山顶a处望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志p处的仰角为450,又观其在湖中之像的俯角为600,试求飞艇离湖面的高度h米(观察时湖面处于平静状态)

例3、如图所示:某货船以20海里/时的速度将一批重要货物由a处运往正西方的b处,经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由a向北偏西600方向移动,距离台风中心200海里的圆形区域(包括边界)均会受到影响。

(1)问b处是否会受到台风的影响?请说明理由。

(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?

(供选数据:=1.4 =1.7)

四、巩固提高:

1、 若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高 米。

2、如图:a市东偏北600方向一旅游景点m,在a市东偏北300的公路上向前行800米到达c处,测得m位于c的北偏西150,则景点m到公路ac的距离为 。(结果保留根号)

3、同一个圆的内接正方形和它的外切正方形的边长之比为( )

a、sin450 b、sin600 c、cos300 d、cos600

3、如图所示,梯子ab靠在墙上,梯子的底端a到墙根o的距离为2米,梯子的顶端b到地面的距离为7米,现将梯子的'底端a向外移动到a,使梯子的底端a到墙根o的距离等于3米,同时梯子的顶端b下降至b,那么bb( )(填序号)

a、等于1米b、大于1米c、小于1米

5、如图所示:某学校的教室a处东240米的o点处有一货物,经过o点沿北偏西600方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。

(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?

(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的长度(只考虑声音的直线传播)

三角函数教案篇2

总 课 题三角函数的图象与性质总课时第15课时

分 课 题三角函数的应用分课时第 1 课时

教学目标能应用三角函数的图象与性质解决有关实际问题,体会三角函数是描述周期现象的重要数学模型。

重点难点能应用三角函数的图象与性质解决有关实际问题。

引入新课

1、如图,点 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为 ,周期为 ,且物体向右运动到距平衡位置最远处时开始计时。

(1)求物体对平衡位置的位移 和时间 的函数关系;

(2)求该物体在 时的位置。

2、一半径为 的水轮如图所示,水轮圆心 距离水面 ,已知水轮每分钟转动 圈,如果当水轮上点 从水中浮现时(图中点 )开始计算时间。

(1)将点 距离水面的高度 表示为时间 的函数;

(2)点 第一次到达最高点大约要多长时间?

(参考数据: )

例题剖析

例1、一根长 的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移 和时间 的函数关系式是 。

(1)求小球摆动的周期;

(2)已知 ,要使小球摆动的周期是 ,线的长度应当是多少?

(精确到 , 取 )

例2、心脏跳动时,血压在增加或减小。血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数 为标准值。

设某人的血压满足函数式 ,其中 为血压 , 为时间 ,试回答下列问题:

(1)求函数 的周期;

(2)此人每分钟心跳的次数;

(3)画出函数 的草图;

(4)求出此人的血压在血压计上的读数,并与标准值比较。

课堂小结

能应用三角函数的图象与性质解决有关实际问题。

课后训练

班级:高一( )班 姓名__________

一、基础题

1、在图中,点 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向。若已知振幅为 ,周期为 ,且物体向右运动到平衡位置时开始记时。

(1)求物体对平衡位置的位移 和时间 之间的函数关系;

(2)求该物体在 时的位置。

二、提高题

2、某城市一年中 个月的月平均气温与月份数之间的关系可以近似地用一个三角函数来描述。已知 月份的月平均气温最高,为 , 月份的月平均气温最低,为 。求出这个三角函数的`表达式,并画出该函数的图象。

三、能力题

3、如图,弹簧挂着的小球做上下振动,它在 时相对于平衡位置(静止时的位置)的高度 由下列关系式决定: 。以 为横坐标, 为纵坐标,画出这个函数在长度为一个周期的闭区间上的简图,并且回答下列问题:

(1)小球在开始振动时(即 时)的位置在哪里?

(2)小球的最高点和最低点与平衡位置的距离分别是什么?

(3)经过多少时间小球往复振动一次(周期)?

(4)每秒钟小球能振动多少次(频率)?

4、在一次气象调查中,发现某城市的温度 的波动近似地按照规,其中 是从某日 ∶ 开始计算的时间,且 。

(1)画出温度随时间波动的图象;(2)利用函数图象确定最高和最低温度;

(3)最高和最低温度在什么时候出现?(4)在什么时候温度为:① ?② ?

三角函数教案篇3

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在r上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

创设情境,揭示课题

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在r上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

探究新知

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的`解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为r

2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

三角函数教案篇4

教学目标:

1.掌握同角三角函数之间的三组常用关系,平方关系、商数关系、倒数关系.

2.会运用同角三角函数之间的关系求三角函数值或化简三角式.

教学重点:

理解并掌握同角三角函数关系式.

教学难点:

已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;

教学用具:

直尺、投影仪.

教学步骤:

1.设置情境

与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.

2.探索研究

(1)复习任意角三角函数定义

上节课我们已学习了任意角三角函数定义,如图1所示,任意角 的六个三角函数是如何定义的呢?

在 的终边上任取一点 ,它与原点的距离是 ,则角 的六个三角函数的值是:

(2)推导同角三角函数关系式

观察 及 ,当 时,有何关系?

当 且 时 、 及 有没有商数关系?

通过计算发现 与 互为倒数:∵ .

由于 ,

这些三角函数中还存在平方关系,请计算 的值.

由三角函数定义我们可以看到: .

∴ ,现在我们将同角三角函数的基本关系式总结如下:

①平方关系:

②商数关系:

③倒数关系:

即同一个角 的正弦、余弦的平方和等于1,商等于角 的正切,同一个角的正切、余切之积等于1(即同一个角的正切、余切互为倒数).上面这三个关系式,我们称之为恒等式,即当 取使关系式两边都有意义的任意值时,关系式两边的值相等,在第二个式中, 在第三个式中, 的终边不在坐标轴上,这时式中两边都有意义,以后解题时,如果没有特别说明,一般都把关系式看成是意义的.其次,在利用同角三角函数的基本关系式时,要注意其前提“同角”的条件.

(3)同角三角函数关系式的应用

同角三角函数关系式十分重要,应用广泛,其中一个重要应用是根据一个角的某一个三角函数,求出这个角的其他三角函数值.

已知 ,且 是第二象限角,求 , , 的.值.

解:∵ ,且 ,∴ 是第二或第三象限角.

如果 是第二象限角,那么

如果 是第三象限角,那么 ,

说明:本题没有具体指出 是第几象限的角,则必须由 的函数值决定 可能是哪几象限的角,再分象限加以讨论.

已知 ,求 的值.

解: ,且 , 是第二或第三象限角.

如果 是第二象限角,那么

如果 是第三象限角,那么 .

说明:本题没有具体指出 是第几象限角,则必须由 的函数值决定 可能是哪几象限的角,再分象限加以讨论.

已知 为非零实数,用 表示 , .

解:因为 ,所以

又因为 ,所以

于是 ∴

由 为非零实数,可知角 的终边不在坐标轴上,考虑 的符号分第一、第四象限及第二、三象限,从而:

在三角求值过程当中应尽量避免开方运算,在不可避免时,先计算与已知函数有平方关系的三角函数,这样可只进行一次开方运算,并可只进行一次符号说明.

同角三角函数关系式还经常用于化简三角函数式,请看例4

化简下列各式:

(1) ;(2) .

解:(1) (2)

3.演练反馈(投影)

(1)已知: ,求 的其他各三角函数值.

(2)已知 ,求 , .

(3)化简:

解答:(1)解:∵ ,所以 是第二、第三象限的角.

如果 是第二象限的角,则:

如果 是第三象限的角,那么

(2)解:∵ ∴ 是第二或第四象限的角

由的求法可知当 是第二象限时

当 是第四象限时

(3)解:原式

4.本课小结

(1)同角三角函数的三组关系式的前提是“同角”,因此 , …….

(2)诸如 , ,……它们都是条件等式,即它们成立的前提是表达式有意义.

(3)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.

课时作业:

1.已知 , ,则 等于( )

a. b. c. d.

2.若 ,则 的值是( )

a.-2 b.2 c.±2 d.

3.化??

4.化简 ,其中 为第二象限角.

5.已知 ,求 的值.

6.已知 是三角形的内角, ,求 值.

三角函数教案篇5

第一教时

教材:

角的概念的推广

目的:

要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

过程:

一、提出课题:“三角函数”

回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广

1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”

2.讲解:“旋转”形成角(p4)

突出“旋转” 注意:“顶点”“始边”“终边”

“始边”往往合于轴正半轴

3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角 或 可以简记成

4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1° 角有正负之分 如:a=210° b=-150° g=-660°

2° 角可以任意大

实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°)

3° 还有零角 一条射线,没有旋转

三、关于“象限角”

为了研究方便,我们往往在平面直角坐标系中来讨论角

角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等

四、关于终边相同的角

1.观察:390°,-330°角,它们的终边都与30°角的终边相同

2.终边相同的角都可以表示成一个0°到360°的.角与 个周角的和

390°=30°+360°

-330°=30°-360° 30°=30°+0×360°

1470°=30°+4×360°

-1770°=30°-5×360°

3.所有与a终边相同的角连同a在内可以构成一个集合

即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和

4.例一 (p5 略)

五、小结: 1° 角的概念的推广

用“旋转”定义角 角的范围的扩大

2°“象限角”与“终边相同的角”

六、作业: p7 练习1、2、3、4

习题1.4 1

三角函数教案篇6

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。

在本节课的教学过程中,本人引导学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

3、问题:由 ,你能否知道sin2100的值吗?引如新课。

设计意图

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

(二)新知探究

1、 让学生发现300角的终边与2100角的终边之间有什么关系;

2、让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系;

3、sin2100与sin300之间有什么关系。

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫。

(三)问题一般化

会计实习心得体会最新模板相关文章:

食品安全教案中班教案6篇

六年级语文上册教案教案推荐6篇

数学教案小学数学教案通用6篇

大班社会活动教案:春节教案6篇

醉翁亭记教案优秀教案6篇

蚕和蝉教案语言教案反思最新6篇

教案幼儿园音乐教案优质6篇

数学教案小学数学教案模板6篇

科学教案沉与浮教案6篇

科学教案沉与浮教案推荐6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    107266

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。