一个有创意的教案能够激发学生的思维和创造力,教案的编写需要教师对教材内容的深入理解和教学经验的积累,美篇六六网小编今天就为您带来了分数除法一教案精选6篇,相信一定会对你有所帮助。
分数除法一教案篇1
一、复习引新
1.说出下面各数的倒数。
0.36
2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)
3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)
二、新授教学
(一).教学分数除法的意义(课件一下载)
①每人吃半块月饼,4个人一共吃多少块月饼?
半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()
②两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:24
③两块月饼,分给每人半块,可以分给几个人?
列式后,说一说结果是多少?你是如何得出结果的?
④组织学生讨论:分数除法的意义。
总结:分数除法的意义与整数除法的.意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
⑤练习反馈。
根据:,写出,(二).教学分数除以整数
1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)
①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。
③、教师板书整理。
(米)
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。
三、巩固练习
1.计算下面各题:
学生独立完成,教师巡视,进行个别辅导。
2.请同学求未知数①②3.判断。
①分数除法的意义与整数除法的意义相同。()
②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()
③()
④()
⑤()
4.解答下面各题。
①把平均分成4份,每份是多少?
②什么数乘以6等于?
③一个正方形的周长是米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
练习七1、2、3、4
六、板书设计
分数除法一教案篇2
分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:
一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。
从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。
二、渗透数学建模思想,强化用方程解答分数除法问题。
从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的`等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。
三、借助线段图分析数量关系,发挥其工具性。
线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。
本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。
本单元的教育目标是:
1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。
2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。
3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。
4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。
●分数除法,安排4课时。
第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。
第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。
第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。
第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。
分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。
分数除法一教案篇3
一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)
二、教学分数除法的意义
1、2/7 ×( )=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。下面口算几题:
3/8÷3/8 0÷4/9 1÷2/5 3/4÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )
根据学生的`回答板书:
3/4÷3 = 3÷34 = 1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷3 4/9÷4 10/9÷5 6/7÷2
6、质疑
你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?
7、小组讨论,自主学习分数除以整数
用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2) 1除以一个分数,结果是该分数的倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5 ÷3=3/15 ÷3=1/15
(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=
(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
(4) ……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15
观察 1/5÷3== 1/5×1/3 ,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的优化
刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题
2/3÷3 2/11÷2 3/8÷6 5/4÷2
2、练习七第1题
3、讨论题
1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?
分数除法一教案篇4
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力。
教学重点:分数的数感培养,以及与除法的联系。
教学难点:抽象思维的培养。
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:a,7/8是什么数 它表示什么
b,7÷8是什么运算 它又表示什么
c,你发现7/8和7÷8之间有联系吗
2,揭示课题。
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系"。
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学p90 。例2:把1米长的钢管平均截成3段,每段长多少
提问:a,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的.1/3,就
是1/3米。
b,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系。)
板书: 1÷3= 1/3
c,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学p90 。例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:a,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
b,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法。
提问:a,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块。)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块。)
b,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法。
3,小结提问:a,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
b,你能举几个用分数表示整数除法的商的例子吗
c,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
d,b为什么不能等于0
4, 看书p91 深化。
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算。
三,巩固练习 [课件5]
1,用分数表示下面各式的商。
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算。
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数。1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数。
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的'分子,除数相当于分数的分母。故此,分数与除法既有联系,又有区别。
在整数除法中零不能作除数,那么,分数的分母也不能是零。
五,家作
p93 。1,2,3
板书设计: 分数与除法的关系
例2:1÷3=……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
分数除法一教案篇5
教学目标:
使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。
教学重点:
分析题里所含的数量关系,把哪个数看作单位1。
教学难点:
怎样列出方程。
教学过程:
一、复习
列式计算,并口述把哪个数看作单位1。
(1)的是多少? ( )看作单位1。
(2)14的是多少? ( )看作单位1。
(3)1的`是多少? ( )看作单位1。
二、新授
1、板书课题:列方程解文字题
2、出示例4:一个数的是,这个数是多少 ?
(1) 分析数量关系
提问
①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)
②硬该把哪个数看作单位1?为什么?
③单位1所表示的数知道吗?
④怎样求单位1所表示的“这个数”?(引导学生用设未知数x的方法来解决)。
使学生明确:根据一个数乘以分数的意义。
由已知:一个数的是,得:一个数×=?
(2) 列方程解文字题。
第一步,设未知数为x。教师板书
解:设这个数是x。
第二步,根据题意列出方程。教师板书
x×=
第三步,解这个方程。教师板书:(略)
第四步,检验:(略)
第五步:作答
3、小结
(1)怎样设求知数?
要求单位“1”的量,设单位“1”的量为x。
(2) 样根据题意列方程?
找出题中数量之间的等量关系。
三、巩固练习
1、教科书第35页“做一做”。
2、一个数的1倍等于2,求这个数。
四、课堂练习
练习九第12、16—19题。
五、作业
练习九第13—15题。
六、课外思考
练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。
分数除法一教案篇6
一、教学内容
苏教版小学数学第十一册第33—38页“分数除法”例1—例4。
二、简要分析
本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。
三、教学过程
(一)复习旧知,作好铺垫,导入新课。
1、说出下列各数的倒数(出示卡片)
2、6、—、—、0.5、 1—、 0.7
2、用投影打出:下面两题简便计算的根据是什么?
12÷25=(12×4)÷(25×4)=48÷100=0.48
11÷125=(11×8)÷(125×8)=88÷1000=0.088
[简析:商不变规律的应用,为后面学习新知作出充分准备。]
3、用投影分a、b组分别出示:下列算式中,哪些算式你一眼就能看了它的商?
a组:78÷10.35÷1136÷721.8÷9
b组:—÷1—÷1—÷218÷——÷1
—÷——÷÷2——÷0.7
[简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的.铺垫)一看就知道商是几(即被除数)]
师:接着问b组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。
(二)指导探索,在新旧知识的衔接上教师加以点拔导学。
(1)请大家列出b组算式中除数不是1的算式。
—÷218÷——÷——÷—
4—÷2— —÷0.7
(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?
[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]
师:下面分学习小组进行讨论。
(3)交流。
学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。
学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。
[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]
(教师根据学生的回答,作好下列板书)
—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)
=—×—÷1=18×—÷1
=—×— =18×—
(三)引导学生观察、比较、类推,得出结论。
师问:这里我们是应用的什么进行变化的?(商不变的规律)
(教者把上面板书用虚线框起)让学生观察比较。
—÷2=—×—18÷—=18×—
问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)
生汇报:除号变成了乘号,除数变成了它的倒数。
分数除法算式变成了分数乘法算式。
师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。
练习:用复合投影片打出:
将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)
—÷— —÷— —÷612÷—
=—×—=—×4 =—×—=12×—
[评析:抓住时机,练重点难点,强化新知。]
6、讨论、比较、类推,概括方法。
问:在刚才的练习中,你认为有什么规律?
(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)
师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?
生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)
引导学生讨论:为什么乙数要加上零除外?
(四)利用法则,练习重点,巩固新知。
1、—÷3=—×———=12÷—=12×———=
—÷—=—×———=—÷—=———()———
2、计算。(并指名板书,注意书写格式)
—÷3—÷——÷36÷—
3÷——÷——÷— —÷—
3、改错。
(1)9÷—=9÷—=—=10—(2)—÷5=—×—=—
(3)—÷—=—×—=—
4、判断。
(1)1÷—=—÷1(2)a÷b=a×—
[评析:改错题、判断题的设计,进一步强化了计算法则。]
(五)作业练习,熟记法则。
1、练习八第3题的前4题
第6题的前4题
2、校对答案。(说出过程,强化法则的应用)
思考题:计算(1)4—÷2—(2)—÷0.7
[评析:这里是知识结构的完整,知识点的引伸。]
(六)总结。
1、今天我们一起研究了什么内容?
2、你有哪些收获?
3、计算过程中应注意什么问题?
四、教后评析
本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。
1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。
2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。
3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。
会计实习心得体会最新模板相关文章: