美篇六六网 >工作计划

人教版六年级数学教案模板5篇

教案的准备能够帮助我们更好地利用多媒体技术和教具进行教学,编写教案时,教师应合理安排教学时间和教学资源,以下是美篇六六网小编精心为您推荐的人教版六年级数学教案模板5篇,供大家参考。

人教版六年级数学教案模板5篇

人教版六年级数学教案篇1

单元目标:

1、 理解百分数的意义,了解它在实际中的应用,会正确地读、写百分数。

2、 能够进行小数、分数和百分数的互化。

3、理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

4、在理解、分析数量关系的基础上,使学生能正确地解答有关百分数的问题。

单元重点:

百分数的意义,求一个数是另一个数的百分之几的应用题。

单元难点:

比较复杂的百分数应用题。

课题 百分数的意义和写法

课型 新授课 备课人 授课教师

分课时 第1课时 总课时 总第 课时

教学目标 知识

与技能 使学生理解百分数的意义;能够正确的读写百分数、运用百分数解决简单的实际问题。

问题解决与数学思考 使学生经历收集、分析、处理信息的过程,培养学生分析、比较、抽象、概括的能力和与人交流合作的能力。

情感

与态度 使学生感受百分数在实际生活中的广泛应用,同时结合相关信息对学生进行思想教育。

重点 百分数的意义和写法。

难点 百分数与分数的联系和区别

教学过程 教 学 预 设 个 性 修 改

目标导学 复习激趣 目标导学 自主合作 汇报交流 变式训练

创境激疑 (一)谈话引入,揭示课题。(2分钟)

师:同学们,课前教师让大家收集生活中的百分数,收集到了吗?在哪儿收集的?容易找吗?这说明了什么?

既然百分数这么有用,这节课我们就来学习百分数好吗?你想学习有关百分数的哪些知识?

这节课我们重点学习百分数的意义和写法。(板书课题)

合作探究 (二)探究百分数的意义和写法。(20分钟)

1、百分数的意义

师:请同学们看大屏幕:(出示三杯糖水)

你认为哪杯糖水更甜?

学生争论后得出不好判断的结论。

老师给出三杯糖水中糖的含量:7克、13克、9克。问:这下能判断吗?还需要什么条件?

再给出糖水的重量:20克、50克、25克。问:这下能判断吗?看什么?

生:看糖占糖水的几分之几?

根据学生的回答板书:

师:这样能判断哪个杯更甜吗?怎样就容易看出来了?(通分)

师:百分数表示的是两个数量之间的倍数关系,是一个分率,后面不能带单位名称,所以百分数又叫百分率或百分比。(板书)

2、百分数的.写法:

师:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(板书)师示范写35%。

请一位学生板演26%、36%,其他学生在本上写。

师生交流:百分数怎样写规范、美观?

①两个小圆圈要写的小一点。②斜线的倾斜程度。

3、由刚才的不好判断,到现在的一目了然,是谁帮了我们的忙?大家在课前已经收集了许多生活中的百分数,你现在能说说这些百分数的具体含义吗?好,下面我们就来交流一下:四人小组交流,说说你收集的百分数,表示什么意思?

(全班交流)谁愿意向大家展示你收集的百分数?说说它的意义。

4、老师也收集了一些百分数,想不想看?

课件出示:读一读

(1)我国的耕地面积占世界耕地面积的7%;

(2)我国人口占世界人口的22%;

(3)在北京奥运会上,我国体育健儿共获得51枚金牌,占金牌总数的16.9%;

(4)我国发射人造卫星的成功率是100%。

这些百分数都表示什么意义,你知道吗?

看了这些信息,你想说什么?

(三)百分数与分数的区别和联系。(5分钟)

1、小组讨论:百分数与分数有什么区别和联系?

2、学生汇报:

学生可能回答: ①分子 ②分母 ③读法 ④意义等的不同。

课件出示:

下面哪个分数可以用百分数来表示?哪个不能?说说为什么?

一堆煤 吨,运走了它的 。

百分数是分数吗?分母是100的分数是百分数吗?

得出结论:分数即可以表示两个数之间的倍数关系,也可以表示一个具体的数量,百分数只能表示两个数之间的倍数关系。百分数是特殊的分数。

拓展应用 1、百分数在我们的生活中无处不在,成语里也有百分数。

课件出示:请将下列词语用百分数表示出来

十拿九稳 百里挑一 百战百胜 一举两得

(设计意图:使学生认识到生活中处处有数学)

总 结 1、这节课你对自己的表现满意吗?用一个百分数表示你的满意程度。

2、对教师满意吗?也用一个百分数表示。

3、最后,教师送给同学们一句名言,与大家共勉。

天才=99%的汗水+1%的灵感。

作业布置 做一做

板书设计 百分数的意义和写法

14% 读作:百分之十四

65.5% 读作:百分之六十五点五

120% 读作:百分之一百二十

课题 百分数与小数互化

分课时 第2课时 总课时 总第 课时

教学目标 知识

与技能 使学生理解并掌握百分数和小数互化的方法,能正确地把小数化成百分数或把百分数化成小数;在计算、比较,分析、探索百分数小数互化的规律的过程中,发展学生的抽象概括能力。

问题解决与数学思考 通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。

情感

与态度 学生在教师的精心引导下,主动参与到数学活动中,通过合作交流,得出结论,提高数学素养。

重点 百分数与小数互化的方法,能正确进行两者之间的互化。

难点 归纳百分数与小数互化的方法。

教学过程 教 学 预 设 个 性 修 改

目标导学 复习激趣 目标导学 自主合作 汇报交流 变式训练

创境激疑 一、复习导入

1、百分数的意义是什么?指生回答。

生1:带有百分号的数叫百分数。

生2:表示一个数是另一数的百分之几的数叫百分数。

2、百分数与分数的区别在哪里?为什么要把百分数单独列一单元?

百分数表示两个数之间的倍比关系,又叫百分比或百分率,不能带计量单位;分数既可以表示两个数之间的倍比关系,叫分率,也可以表示具体的数量,能带计量单位。

百分数与分数既有联系又有区别,它在生活中广泛的运用到,所以有必要单独为一单元。

3、我们学过了整数、小数、分数、百分数,板书课题

合作探究 二、看到这个课题,你想知道什么?

生1:为什么要转化?

生2:怎样转化?

师:对呀,为什么要相互转化呢?引导学生说出转化的意义。一是便于计算,二是便于比较。(板书),那怎么转化呢?这就是我们今天主要研究的内容。不过,百分数怎么转化成小数,小数又怎么转化成百分数,老师想把讲台让给你们,请同学们来当小老师,让讲台成为你们的舞台。

三、合作探究,学习新知

1、学生自学课本84页(两分钟)

2、小组讨论(三分钟)

3、指生上台汇报,集体交流小数转化成百分数的方法

(1)出示例1:(要求学生讲)

(2)小老师甲:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

3÷5=0.6= =60%

4÷6≈0.667 = =66.7%

(3)小老师乙:请大家观察一下,这个过程先把小数化成了分数,显得麻烦了些。而我可以将小数直接化成百分数的。只要把小数点向右移动两位,同时在后面添上百分号就行了。

(4)教师说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

4、师:学到这里也累了,今天要学习的内容学完了吗?(没有,还有百分数转化成小数的方法没学),噢,那我们接着学百分数如何转化成小数的。

(1)出示例2:(要求学生讲)

(2)小老师丙:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。

(3)启发学生口述每题的转化过程,板书:

750×20%

=750÷

=750×0.2

=150(人)

750×20%

=750×

=750×

=150(人)

(4)小老师丁:老师,我的方法更简便,能将百分数很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。

拓展应用 做一做

总 结 这节课你学会了什么?还有什么不懂的问题?

作业布置 练习十八6、7题

板书设计

百分数与小数互化

例1、3÷5=0.6= =60%

4÷6≈0.667 = =66.7%

例2 750×20%

=750÷

=750×0.2

=150(人)

750×20%

=750×

=750×

=150(人)

人教版六年级数学教案篇2

本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

教材还编排了很多问题情境图来突破教学中的重难点问题。

例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

第1课时比的意义

教材48~49页的内容。

1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

重点:

理解比的意义以及比与分数、除法之间的关系。

难点:

理解比与分数、除法之间的关系,明确比与比值的区别。

课件:

学具。

1.课件出示教材第48页情境图。

教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

(1)长比宽多多少厘米?15-10;

(2)宽比长少多少厘米?15-10;

(3)长是宽的多少倍?15÷10;

(4)宽是长的几分之几?10÷15。

2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

自学比的相关知识。

学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

(1)比各部分的名称。

课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

(2)比值的意义。

师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

讨论后根据学生交流反馈填写下表:

联系

区别

除法

被除数÷除数=商

一种运算

分子—分母=分数值

前项:后项=比值

两个量的关系

请尝试用字母表示比和除法、分数之间的内在联系。

板书:a∶b=a÷b=(b≠0)。

师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

1.教材第49页“做一做”第1题。

请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

2.教材第49页“做一做”第2题。

学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

说说这节课我们学习了什么?你有什么收获?

教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

第2课时比的基本性质

教材第50~51页的内容。

1.理解和掌握比的基本性质,初步掌握化简比的方法。

2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

重点:

理解比的基本性质。

难点:

正确应用比的基本性质化简比。

课件、答题纸、实物投影。

师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

板书:比的基本性质。

学生纷纷猜想比的基本性质。

根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

1.教学比的基本性质。

师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

(4)全班验证。

2.完善归纳,概括出比的基本性质。

10∶15=10÷15==

15∶9=15÷9=

16∶20=(16

□)∶(20

□)

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善并板书。

(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

3.深化认识。

利用比的基本性质做出准确判断:

(1)8∶10=(8+10)∶(10+10)=18∶20( )

(2)12∶16=(12÷6)∶(16÷4)=2∶4( )

(3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

(4)比的前项乘3,要使比值不变,比的后项应除以3。

( )

4.比的基本性质的应用。

(1)引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

(2)从下列各比中找出最简整数比,并简述理由。

3∶4 18∶12 19∶10 ∶ 0.75∶2

(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

学生独立尝试,化简后交流。

(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

四人小组讨论研究,找到化简的方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

5.方法补充,区分化简比和求比值。

)

还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

2.教材第53页“练习十一”第4题。学生口答完成。

这节课你有什么收获?还有什么疑问?

比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

教材第54页的内容。

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

课件。

课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

1.课件出示教材第54页例2。

师:题目中要配制什么?(配制500

ml的稀释液)

师:是按什么进行配制的?(浓缩液和水的'体积按1∶4的比进行配制)

师:“浓缩液和水的体积比是1∶4”是什么意思?

生:就是说在500

ml的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

师:你能求出浓缩液和水的体积各是多少毫升吗?

引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

思路一:先把比化成分数,用分数乘法来解答。

稀释液平均分成的份数:1+4=5(份)

浓缩液的体积:500×=100(ml)

水的体积:500×=400(ml)

思路二:把比看作分得的份数,先求一份数,再求几份数。

稀释液平均分成的份数:1+4=5(份)

浓缩液的体积:500÷5×1=100(ml)

水的体积:500÷5×4=400(ml)

2.验证所求问题。

方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

3.明确按比例分配的意义。

在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

4.整理解题思路。

(1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

(2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

1.教材第55页“练习十二”第1、2题。

第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

3.教材第56页“练习十二”第11题。

注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

今天这节课我们主要研究了什么?说说你的收获和感受。

本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

人教版六年级数学教案篇3

教学内容:

抽取游戏

教学目标:

1、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:

抽取问题。

教学难点:

理解抽取问题的基本原理。

教学过程:

一、教学例

盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

1、猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2、实验活动。

(1)一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2)一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3、发现规律。

启发:摸出球的.个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做

第1题。

(1)独立思考,判断正误。

(2)同学交流,说明理由。

第2题。

(1)说一说至少取几个,你怎么知道呢?

(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习

完成课文练习十二第1、3题。

人教版六年级数学教案篇4

教学目标

(1)能够利用身边的工具测量出圆的周长

(2)能够掌握多种测量计算圆的周长的方法

(3)能够说出圆周率小数点7位

(4)能够了解祖冲之

(5)能够灵活运用圆的周长计算公式进行计算

(6)培养学生逻辑推理能力

(7)对学生进行爱国主义教育

(8)培养学生的观察、比较、概括和动手操作的能力

教学重难点

重点:圆的周长和圆周率的意义

难点:圆周长公式的推导过程

教学工具

ppt课件、视频、篮球、硬币、瓶盖

教学过程

一、讨论探索活动导入

1、展示实物篮球、瓶盖、硬币

揭示主题:圆的周长

2、提问:正方形、长方形的边长是4条边相加就是周长,那圆的周长也和它们一样吗?

3、引导学生利用身边的工具测量出篮球的周长(分小组讨论探索)

4、提问:圆是没有边长的,它只是一条曲线,你们能利用手中的工具将圆的周长测量出来吗?你们能想几种方法出来?

5、分享测量的方法

方法:化曲线为直线、滚动、软皮尺测、绳绕圆一周

二、了解圆周率

1、提问:观察一下篮球和硬币的直径和周长,你们得出什么结论?

结论:

圆的周长与它的直径有关,直径越大,周长越大

一个圆的周长总是它的直径的3倍多一点

2、提问:有谁知道圆周率是多少吗?

圆周率3.1415926535

3、大家猜一猜圆周率有多少小小数点?

(展示祖冲之图片以及圆周率的发展史)

中国古代数学家祖冲之比外国早1000年第一个把圆周率的值精确到7位小数

圆周率是任意一个圆的周长与它的直径的比值,这个直径是一个固定的数,用字母π表示,它是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

3、播放视频:歌曲名3.1415

三、利用公式计算圆的周长

1、根据圆的周长和直径的关系可以推导出一个圆的周长计算公式,在书上,告诉我是什么?

公式:c=πd或c=2πr

2、提问:求圆的`周长需要知道哪些条件?

条件:直径或者半径、π=3.14

3、例题讲解

书上第64页例题

4、做练习题

(展示ppt)

课后小结

圆的周长与它的直径有关,直径越大,周长越大

圆周率π是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

圆的周长公式:c=πd或c=2πr

课后习题

同样的小组成员,测量一个学校圆形的周长,小组的形式合作完成

人教版六年级数学教案篇5

教学目标

1.理解本金、利息和利率的含义,掌握利息的计算方法,会正确的计算存款利息。

2.使学生初步认识储蓄的含义,感受到储蓄给人们生活带来的方便及益处。

3.使学生感受数学在生活中的作用,培养学生初步的理财意识和实践能力。

教学重难点

1.利息和本息和的计算。

2.利息和本息和的计算。

教学过程

1.谈话。

大家的压岁钱是怎么管理的?为什么把钱存入银行?

2.导入。

把钱存入银行,会获取一部分利息,怎么计算利息呢?这就是我们今天要学习的'内容。

1.探究有关储蓄的知识。

(1)储蓄的好处。

(2)储蓄的方式。

(3)什么是本金、利息、利率以及三者之间的关系?

2.深入理解有关储蓄的知识。

课件出示:小红20xx年9月1日把100元钱存入银行,整存整取一年,到20xx年9月1日,小红不仅可以取回存入的100元,还可以得到银行多付给的3元,共103元。

引导学生找出题中的本金和利息。

3.探究利息、利息与本金和的计算方法。

(1)分析题意,引导学生探究利息的计算方法。

(2)组织学生尝试解题,交流汇报。

巩固实践爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为5.40%,到期一次支取,支取时凭非义务教育的学生身份证明,可以免征储蓄存款利息所得税。

(1)贝贝到期可以拿到多少钱?

(2)如果是普通三年期存款,应缴纳利息税多元?

板书设计

利率

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:利息与本金的百分比叫做利率。

利息=本金×利率×存期

方法一:方法二:

5000×3.75%×2=375(元)5000×(1+3.75%×2)

5000+375=5375(元)=5000×(1+0.075)

=5000×1.075

=5375(元)

会计实习心得体会最新模板相关文章:

人教版二年级数学下册教学计划7篇

人教版数学四年级上册教学计划6篇

人教版三年级数学下册工作计划6篇

人教版二年级数学上册教学计划6篇

人教版小学数学六年级上册教学计划8篇

人教版小学数学二年级上册教学计划8篇

人教版二年级数学教学计划7篇

部编版六上语文教案推荐8篇

初中七上地理人教版教案5篇

语文5年级上册人教版作文5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    100829

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。